
Appendix

This appendix is organized into several sections to pro-
vide comprehensive details about our experimental setup,
methodology, and additional results. We cover key aspects
such as simulation environments, learning processes, exe-
cution details, baseline settings, real-world experiments, and
object details. Each section delves into assumptions, settings,
hyperparameters, and supplementary results that could not be
included in the main paper.

A. Simulation Details

Our experiments are performed in three simulation envi-
ronments:

• TrainingEnv: This environment excludes the robot
and focuses on force-based interactions with objects.
Random objects from the training set are selected and
placed at [−1, 0] with randomized rotations around the
Z-axis. Force application points are randomly sampled,
and actions are applied using the simulator.

• BaselineTrainingEnv: Includes both a Panda robot and
objects. The objects are placed on a partial circle around
the robot to ensure reachability. Object orientations are
randomized for evaluation consistency.

• EvalEnv: Both FLEX and baseline methods are evalu-
ated in this environment with consistent settings.

B. Learning Process

1) Network Design: The actor network for TD3 has two
heads:

Action Direction: 3 dimensions,
Action Scale: 1 dimension.

Both the action dimensions and action scale are limited to
(0, 1] using bounded activation functions. The action is then
computed as:

at = πdirection(st) · πscale(st) · η
where η is the maximum allowable force.
2) Curriculum Learning for Revolute Objects: Training

for revolute objects uses the following curricula with increas-
ing rotation randomization:

(−0.25, 0.25),

(−π/2, 0),

(−π/2, π/2),

(−π, 0),

(−π, π).

The next curriculum is used when the agent applies 80% of
force in the correct direction over 100 episodes.

3) Network Structure: The actor network is a two-headed
MLP network. One input layer and two hidden layers encode
the state. The scale head and direction head then map the
encoded features to normalized three-dimensional action di-
rection and one-dimensional action scale in order to compute
actions.

Parameter Value
Actor Hidden layers 2

Actor Hidden layer dimensions (400,300)
πdirection Activation function Sigmoid
πscale Activation function Tahn

Critic Hidden Layers 2
Critic Hidden layer dimensions (400,300)

Critic Activation Function ReLU

TABLE I: Agent Network Struture

Parameter Value
Discount Factor (γ) 0.99

Batch Size 100
Learning Rate 0.001

Polyak Update (τ ) 0.995
Noise Clip 1

Policy Delay 2
Max Timesteps per Episode 200

Rollouts 5
State Dimension 6

Action Dimension 3
Max Action 5

η 0.02

TABLE II: Reinforcement Learning Hyperparameters

4) RL Hyperparameters: The training was performed with
24 parallel environments on an Intel i9-12900K processor
with an Nvidia RTX 3080 GPU.

C. Execution Details

1) Execution Assumptions and Object Placement: To
avoid collisions, revolute objects are placed 0.7m away with
a randomized rotation angle between [−π/2, 0], while pris-
matic objects are placed 0.9m away with an angle between
[−3π/4, π/4].

D. Baselines

1) End-to-End RL: The end-to-end RL agent is trained
using the StableBaselines3 TD3 agent, with objects placed
at a fixed location. The reward function is structured to
encourage the robot to approach, grasp, and manipulate the
object in stages.

2) CIPS Training: To improve efficiency, CIPS training
begins with the robot already grasping the object. Four pre-
recorded initial states are uniformly sampled from the 1/4
circle around the robot. This method accelerates training by
reducing unnecessary exploration.



3) GAMMA: As stated in the paper, we assume knowl-
edge of joint type for GAMMA evaluation. We designed a
simple planning method that complies with the ideal joint
dynamics. Specifically, for revolute objects,

aGAMMA
t = −ĥr × v̂t

For prismatic objects,

aGAMMA
t = ĥp

Where ĥr and ĥp are the selected prediction results of
joint parameters given by GAMMA.

We observed that GAMMA tends to overestimate the
number of joints on an object. As a result, we only choose
the first inference result that complies our knowledge of the
joint type from the inference result. If there is no correct
inferred joint type, meaning that GAMMA fails to detect the
type of object, we randomly choose one inference result.

Parameter Value
Policy Learning Rate Default (SB3)
Discount Factor (γ) Default (SB3)
Replay Buffer Size Default (SB3)

TABLE III: Baseline Hyperparameters for CIPS

E. Real-World Setup

1) Hardware and Simplifications: The real-world exper-
iments used a UR-5 arm and an Intel Realsense D455
RGBD camera. To simplify, we used an inverse kinematics
(IK) controller and a toy drawer. We assumed knowledge
of the drawer pose and skipped interactive perception. The
hyperparameters stay the same with simulation experiment
settings.

F. Additional Experiments and Results

1) 80% Opening Criterion: In our experiments, success
is defined as opening the object to at least 80% of its joint
limit.

2) Additional Experiments: Several additional experi-
ments were conducted on objects with different joint config-
urations, but due to space limitations, they are not included
in the main paper.

G. Object Details and Dataset

1) Object Scaling and Preprocessing: Objects were se-
lected from the Partnet-Mobility dataset and scaled for sim-
ulation. Prismatic objects were scaled to 50% and revolute
objects to 30% of their original size.

2) Collision Handling: Due to self-collision issues in the
dataset, we disabled collisions for the main body of objects
during training. Since the objects were partially opened
before manipulation, this did not affect the results.


	Simulation Details
	Learning Process
	Network Design
	Curriculum Learning for Revolute Objects
	Network Structure
	RL Hyperparameters

	Execution Details
	Execution Assumptions and Object Placement

	Baselines
	End-to-End RL
	CIPS Training
	GAMMA

	Real-World Setup
	Hardware and Simplifications

	Additional Experiments and Results
	80% Opening Criterion
	Additional Experiments

	Object Details and Dataset
	Object Scaling and Preprocessing
	Collision Handling


