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Abstract— Learning to manipulate objects efficiently, partic-
ularly those involving sustained contact (e.g., pushing, sliding)
and articulated parts (e.g., drawers, doors), presents significant
challenges. Traditional methods, such as robot-centric reinforce-
ment learning (RL), imitation learning, and hybrid techniques,
require massive training and often struggle to generalize across
different objects and robot platforms. We propose a novel
framework for learning object-centric manipulation policies in
Jorce space, decoupling the robot from the object. By directly
applying forces to selected regions of the object, our method
simplifies the action space, reduces unnecessary exploration,
and decreases simulation overhead. This approach, trained in
simulation on a small set of representative objects, captures ob-
ject dynamics—such as joint configurations—allowing policies
to generalize effectively to new, unseen objects. Decoupling these
policies from robot-specific dynamics enables direct transfer to
different robotic platforms (e.g., Kinova, Panda, URS) with-
out retraining. Our evaluations demonstrate that the method
significantly outperforms baselines, achieving over an order
of magnitude improvement in training efficiency compared to
other state-of-the-art methods. Additionally, operating in force
space enhances policy transferability across diverse robot plat-
forms and object types. We further showcase the applicability
of our method in a real-world robotic setting. Link: https:
//tufts—-ai-robotics—-group.github.io/FLEX/

I. INTRODUCTION

Learning to manipulate objects, particularly in tasks in-
volving continuous interaction, such as pushing, sliding, or
handling articulated objects like drawers and doors, is a sig-
nificant challenge in robotics. These tasks, often referred to
as sustained contact manipulation [1], require the continuous
application of force throughout the interaction. Efficiently
learning such policies is especially difficult when aiming to
generalize across different objects and robotic platforms.

Learning-based approaches like reinforcement learning
(RL) and imitation learning (IL) typically focus on robot-
centric control strategies tailored to specific tasks or config-
urations. However, these methods require extensive training
data and often struggle to generalize to unseen objects or
transfer across different robotic systems. Additionally, tra-
ditional control techniques such as model predictive control
(MPC) rely on precise object and robot dynamics modeling,
limiting their applicability in real-world environments.

Recent efforts have sought to simplify RL by leveraging
task structures to improve efficiency [2] and by decou-
pling object-specific dynamics from robot control to enhance
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Fig. 1: Our method (FLEX: Force-based Learning for EXtended
Manipulation) learns force-based skills for manipulating articulated
objects across various robots by decoupling policy learning from
robot dynamics. The blue box (top-left) shows the core mechanism
of force-based skill learning, while the green box (top-right) il-
lustrates the transfer to different robots. The white box (bottom)
highlights manipulation tasks: L-R, the URSe opens a cabinet,
Kinova opens a microwave door, Panda opens a dishwasher rack,
and a real URS opens a drawer. Detailed architecture in Figure El

generalization [3]. While these approaches show potential,
achieving both efficient learning and robust generalization
across diverse objects and robots remains challenging, par-
ticularly for tasks involving sustained contact and articulated
object dynamics.

This work proposes an approach (Figure [T) to address
these challenges by learning object-centric RL policies in
force space. Rather than relying on robot-specific control
strategies, our method governs object behavior through forces
applied directly to the object. By training policies in simula-
tion, we capture key object dynamics, such as movement con-
strained by joint configurations, which enables generalization
across objects of the same type. This allows the learned
policies to adapt effectively to novel objects by focusing on
their motion-based properties and joint constraints.

Additionally, our method reduces reliance on pre-trained
visual perception models for identifying object properties,
such as joint types and configurations. By decoupling manip-
ulation policies from low-level robot dynamics, our approach
allows for direct transfer across various robotic platforms
using standard controllers, eliminating the need for retrain-
ing. This decoupling simplifies learning by focusing on
object-centric force interactions, improving data efficiency
and policy performance while ensuring robust generalization
across different objects and robots.
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Our method offers three key advantages for sustained
contact manipulation of articulated objects: (1) improved
data and time efficiency, achieved by representing actions in
force space and eliminating unnecessary exploration, which
accelerates training by removing robot-specific kinematics
from the simulation; (2) generalizability across objects with
similar dynamics by capturing essential object features; and
(3) direct transferability across different robotic platforms, as
demonstrated through evaluations on the Kinova, URS, and
Panda robots in simulation and URS arm in real-world.

II. RELATED WORKS

Robot learning for sustained contact manipulation: Sus-
tained contact manipulation, involving tasks like pulling
drawers or opening microwaves, poses challenges due to
high-dimensional action spaces and extended task dura-
tion [4]. Early RL and IL approaches [5], [6] were hidered by
time-consuming real-world data collection. Simulated envi-
ronments [7]-[9] have improved efficiency but still struggle
with stable interactions throughout extended manipulation
tasks and managing complex state-action dynamics [10].
Recent works simplify RL by reducing action spaces
through decoupling high-level policies from low-level motion
planning [11], [12], primitive actions [12], [13], or robot
control [3]. Nasiriany et al. [12] use predefined primitive
actions, while Lu et al. [3] decouple object dynamics from
robot control. Other strategies, like structured RL combined
with task and motion planning [14] or model-based ap-
proaches [15], aim to reduce the state space but struggle
to prevent suboptimal exploration into irrelevant states.
Learning in the force domain offers a promising way to
reduce action space dimensionality and prevent unnecessary
exploration. Combining force-based RL with symbolic plan-
ning has been explored [16], but reliance on accurate digital
twins limits generalization to new objects. Similarly, using
video demonstrations to apply force on objects [17] improves
exploration, but guiding the force applier requires significant
exploration, increasing training time. Additionally, depen-
dence on large, high-quality demonstration datasets and
extensive visual training exacerbates the sim-to-real gap.
Object-centric representation for manipulation: Object-
centric representations focus on objects rather than specific
robots, enabling generalization across tasks and robotic plat-
forms [4]. Methods leveraging 3D perception, such as object-
centric actions [18], trajectories [19], and affordances [20],
enhance the transferability of manipulation skills to new
objects. For example, point clouds can infer joint configu-
rations [21], while articulation flow prediction guides action
direction [22]. However, these approaches often depend on
high-quality datasets and precise perception, limiting their
robustness when dealing with novel or incomplete data [23].
While prior works have simplified robot learning by reduc-
ing action spaces and using object-centric representations,
generalizing across diverse objects and platforms remains
challenging. We build on these efforts by focusing on force-
space learning of manipulation skills, targeting object prop-
erties like joint configurations. Decoupling robot-specific

dynamics and operating solely in object space avoids subop-
timal exploration and reduces training time. This accelerates
learning, enhances generalization, and enables seamless pol-
icy transfer across robotic platforms without retraining.

ITI. PRELIMINARIES
A. Articulated Object Parametrization

An articulated object consists of multiple rigid bodies,
referred to as links, connected by joints that permit relative
motion of object parts. In this work, we focus on objects
with joints that allow one degree of freedom, either rotational
(revolute) or translational (prismatic). Each joint connects
parent and child links, enabling the object to change con-
figuration [22]. Many real-world articulated objects (e.g.,
drawers, doors) follow this structure, with their dynamics
determined by the joint type and configuration.

Prismatic joint: A prismatic joint allows for linear motion
along a fixed axis. The position of a point p along the
prismatic joint is defined as:

keR, p,poecR> (N

where pg is the initial position, hy, € R? is the unit vector
representing the direction of the joint axis, and & is the scalar
displacement along the axis (Figure [2a)).

Revolute joint: A revolute joint allows for rotational move-
ment around a fixed joint axis. The position of a point p on
a revolute joint satisfies the constraint:

p=po+k-hp,

H(p_pr)_ [(P_Pr) h’r] h'r'” =r (2)
where p,. € R? is a point on the axis of rotation (joint origin),
h, € R3 is the unit vector along the rotation axis, and r is
the radius of the circular motion. This equation constrains p
to move in a circular path around the axis (Figure [2b).

B. Reinforcement Learning for Force-Based Manipulation

We formulate the manipulation of articulated objects as an
RL problem, aiming to learn force-based policies that gen-
eralize across objects with similar joint configurations. This
problem is modeled using two Markov Decision Processes
(MDPs): one for prismatic joints, M, = (Sp, A, Ty, R,7),
and one for revolute joints, M, = (S,, A, T;., R,~). In this
setup, the state spaces S, and S, represent the object’s joint-
specific information, such as joint axis direction and config-
uration of the object. The shared action space A consists of
3D force vectors applied to the surface of the object. The
transition functions T}, and 7T}, govern the object’s motion
dynamics based on the applied forces, reflecting the behavior

(a) Prismatic

(b) Revolute

Fig. 2: Tlustration of the two joint configurations and states



of prismatic and revolute joints, respectively. The reward
function R encourages efficient manipulation by maximizing
object displacement with minimal applied force, with v being
the discount factor. Through this formulation, we aim to
learn two policies: 7, for prismatic joints and 7, for revolute
joints, trained to maximize the expected cumulative reward:
Gy = E Y0207 " R(st, at,5441)], where s, € S, or S,
and a; € A. These policies will generalize across articulated
objects with the same joint configurations, allowing the robot
to manipulate a wide range of objects by applying the correct
force-based strategy for the given joint type.

C. Problem Formulation

The challenge we address is solving sustained contact
manipulation tasks for articulated objects characterized by
prismatic or revolute joints. This requires learning force-
based policies in simulation that generalize across various
robotic platforms by adapting to specific joint dynamics. Key
aspects include (1) learning efficient force-based manipula-
tion strategies for both joint types and (2) executing these
learned policies across different robots without retraining.

The problem can be broken down into three components:
(1) Policy learning: The objective is to learn two manipu-
lation policies: one for prismatic joints, 7, : S, — A, and
one for revolute joints, 7, : S, — A. These policies must
handle different contact points on objects and generalize
across various objects with the same joint type. The learned
policies should also be directly transferable to different
robotic platforms without retraining.

(2) Joint identification during policy execution: The robot
must infer the joint type (prismatic or revolute) of the
object it is interacting with. Observing a trajectory of N
end-effector positions ¢ = {p¢f e R3}N,, the joint
type J € {prismatic, revolute} is inferred by maximizing
the likelihood of the trajectory by Maximum Likelihood
Estimation (MLE) problem:

J = p(E|J) 3)

argmax
J €{prismatic, revolute}
where p(¢ | J) is the likelihood of trajectory & conditioned
on joint type J and its parameters (e.g., joint axis, joint
point, etc.). The robot selects the joint type with the highest
likelihood and applies the corresponding pre-learned policy.
(3) Efficient execution across robots: The learned object-
centric policies generalize across robotic platforms, allowing
manipulation without the need for retraining. This ensures
that policies learned in an object-centric simulation are
directly transferable to different robots.

IV. LEARNING METHODOLOGY

The architecture of FLEX consists of three main com-
ponents: (1) Force-space skill learning, (2) Joint parameter
estimation, and (3) Robot execution, as shown in Figure

A. Force-based skill learning

We train object-centric manipulation policies in a simula-
tion environment without a robot. As described in Section[[IL]
learning is modeled using two MDPs: one for prismatic

joints, M, = (S,, A, R,T},7), and one for revolute joints,
M, = (S,,A,R,T,,~). The state spaces S, and S, differ
depending on the joint type. Formally:

. [ha
Sy = vt

Ap: = pt — Po
ve = (pt —pr) = (Pt — Pr) - hrlhr

For prismatic objects, the state s¥ € S, consists of the
unit vector h,, € R3 representing the joint axis direction, and
the displacement Apy, which is the difference between the
current force application point p; € R3 and initial position
po € R? at time step ¢ (for illustration refer to Figure .

For revolute objects, the state s” € S, includes the unit
vector h,. € R? representing the joint axis direction, and vy,
the projection of the current force point p; € R onto the
joint axis. The joint position is represented by p,. € R3 (2b).

The action space shared across the two MDPs is defined as
A ={F € R?|||F|| < n}, which is the set of force vectors
with a maximum magnitude of 7). Every time step ¢ the policy
selects an action a; € A, which serves as the force F} applied
at the point of contact, and 7 is the maximum allowable force
that can be applied to the object by the robot.

The reward function is shared between the two MDPs. It
is defined as a dense reward R(s;, at, S¢+1) that encourages
efficient manipulation by maximizing object displacement
with minimal applied force, as well as a large positive reward
when the agent successfully reaches the goal state. Formally,

|Az| cos(fa,,ae) + [(Si41 = Sgoat) Reoat if Ag >0,
—|Az|| COS(Gag,Az) else.

R(st,at,st+1) = {

where: 0,, A, is the angle between the applied force a;
and the object’s movement direction Az, Aq represents the
change in the object’s joint configuration (either position
for prismatic joints or rotation angle for revolute joints),
I(st4+1 = Sgoa) is an indicator function that equals 1 if
the agent reaches the goal state sgoa, and O otherwise, and
Rgoa is the large positive reward given when the agent
successfully reaches the goal state. The transition functions
T, and T, model the object’s motion dynamics for prismatic
and revolute joints, respectively.

The policies 7, (revolute) and 7, (prismatic) are learned
using TD3 [24], with each policy network predicting force
direction, Tirection(St), and magnitude, Tycae(s¢) € [0, 1]. The
applied force at time ¢ iS a; = Tdirection (St ) * Tscale (St) - 7). This
separation improves control precision and learning efficiency
in force-space manipulation.

The learned policies are contact-agnostic, with contact
points randomly sampled from a predefined region in each
episode (see Section for more details). By applying
forces at various points, the robot learns a general manipula-
tion strategy, ensuring robustness and adaptability regardless
of the exact contact point.

At the end of training, the robot has two learned policies:
m, for revolute joints and 7, for prismatic joints. The next
step is identifying the objects’s joint type so the robot can
select and apply the correct manipulation. We detail this
process of joint estimation in the following subsection.
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Fig. 3: The figure presents the architecture of FLEX (Force-based Learning for EXtended Manipulation) for sustained contact
manipulation of articulated objects. The blue boxes represent Force-based skill learning in simulation, the red boxes depict Interactive
Jjoint parameter estimation, and the green boxes show the Robot execution phase, where the learned policies are applied to perform tasks.

B. Interactive Joint Parameter Estimation

We now describe how the robot leverages these skills
for object manipulation. The robot platform has an RGB-
D camera that generates partial point clouds of the object.
The pre-trained AO-GRASP model [25] identifies suitable
grasp points, and motion planners guide the robot to reach
and maintain a successful grasp.

The robot is not provided with any prior information about
the object’s joint configuration. To infer the joint type J €
{prismatic, revolute}, it securely holds the object and applies
small forces in a specific sequence of predetermined direc-
tions—forward, backward, left, and right. This controlled
interaction generates a short trajectory £ = {pfef e RN,
where each peef is the end-effector position at time step
i, while ensuring that the robot maintains stable contact
with the object. Based on this trajectory, the joint type and
its parameters are estimated, guiding the selection of the
appropriate manipulation policy.

As introduced in Section [[lI-C| the problem of joint type
inference is formalized as a MLE problem (see equation [3).

For a prismatic joint, the joint axis ilp and origin P, are
estimated as:

hp, Do = argmax p (§ | hp, po, prismatic)
hp,po
where h,, is the prismatic joint axis direction, and p,, is the
origin of the prismatic joint. The likelihood p(¢ | prismatic)
models the trajectory as linear motion along the joint axis.

Similarly, for revolute joints, the joint axis o, joint point

Pr, and radius 7 are estimated as:

hraﬁ’r’a72 = argmax p(f ‘
hy,pr,r<p

h,,p,,r, revolute)

where h,. is the joint axis direction, p, is the joint point,
and 7 is the radius of the circular motion. The constraint
r < p ensures physical plausibility, where p is the maximum

allowable radius.

To estimate these parameters, Principal Component Anal-
ysis (PCA) is applied to the end-effector trajectory & to yield
initial estimates of the joint direction and orientation. These
estimates are refined by solving least squares optimization.

For prismatic joints, the objective is to minimize the
projection errors of the trajectory points onto the joint axis:

o= (057 = p0) o]

This ensures that the trajectory points lie along the straight
path, characteristic of prismatic motion.

For revolute joints, the goal is to minimize the error
between the trajectory points and a circle of radius r around
the joint point, as defined by:

2
min —-r
2

eef
Pr,r<p <le br

This captures the revolute motion, where the object’s move-
ment follows a circular trajectory. After determining the joint
parameters, the robot uses the observed trajectory to compute
the likelihood for both joint types. The robot then compares
the likelihoods of the prismatic and revolute models, select-
ing the joint type J that maximizes the likelihood:

J = p(&]J.67),

Po,h

argmax
J € {prismatic, revolute}

where 6 represents the estimated parameters for joint type
J, such as the axis h and origin p, for prismatic joints, or
the axis h,., point p,., and radius 7 for revolute joints.

C. Robot Execution

The final step applies the learned force-based manipulation
policies to robotic platforms. The execution pipeline (green



in Figure [3) consists of three components: perception and
grasping, state construction, and control execution.
Perception and grasping: The robot uses its onboard RGB-
D camera to generate partial point clouds of the object. Using
the pre-trained AO-GRASP model [25], it identifies optimal
grasp points, and a motion planner helps securely grasp the
object, ensuring stable interaction before manipulation.
State construction: After grasping the object, the robot uses
the interactive joint parameter estimation (Section [[V-B) to
infer the joint type and configuration [h.s,p]. This knowl-
edge, along with the robot’s end-effector position p:‘ef , 1S
used to construct the state for the manipulation policy. This
object-centric state construction is crucial, as it enables hard
transfer by aligning the policy learned in simulation with the
object’s real-world configuration, allowing direct application
of the learned policies without further retraining.

Control execution: Once the state is constructed, the robot
selects the policy m;, which provides the forces to be
applied based on the object’s joint dynamics. The forces
predicted by the policy are scaled and mapped to generate the
desired end-effector (EEF) pose changes. These pose changes
are then converted into joint torques via an Operational
Space Controller (OSC) [26], ensuring smooth adaptation to
variations in object weight and dynamics. The robot applies
the specified forces until the manipulation task (e.g., opening
a drawer or microwave door) is successfully completed.
The learned policy does not dynamically adjust force mag-
nitude for unforeseen factors like friction or spring tension.
Addressing this limitation is left for future work, particularly
for handling novel objects with varying dynamics.

V. EXPERIMENTS

We evaluate FLEX on three key aspects: learning effi-
ciency in simulation, policy transferability across objects,
and its task execution performance across different robots
in simulation and in the real world.

A. Experimental Setup

The experiments were conducted in Robosuite [8], a sim-
ulation platform built on Mujoco, focusing on four manip-
ulation tasks: opening cabinets, trashcans, microwaves, and
dishwashers. Cabinets and dishwashers have prismatic joints,
while microwaves and trashcans involve revolute joints. All
objects are sourced from the PartNet-Mobility dataset [27].

We trained two force-based policies: one for prismatic
joints (using a drawer) and another for revolute joints (using
both a microwave and a dishwashelﬂ). For revolute joints,
either the microwave or dishwasher is randomly chosen at the
start of each episode. During training, the agent is provided
with ground-truth joint configurations and randomized force
application points from accessible regions, such as handles
and front panels, derived from the objects’ URDF files.

Training efficiency is measured through wall time and
timesteps. The simulation runs at 20 Hz, with each timestep
corresponding to 0.05 seconds of simulated time. A conver-
gence criterion is defined based on the alignment between

ITwo objects were used due to the complexity of this joint type.

the a%lied force and the object’s movement direction: y =
N Dimo Tadiamy = LS ¢804, Az, where x is the
average percentage of force applied in the correct direction
throughout the episode. Once x averages at least 0.75 over
the last 100 episodes, the policy is considered to have
converged. This criterion yields a 100% success rate for both
prismatic and revolute joint scenarios during traininﬂ

For force-based reinforcement learning, each training
episode has 200 timesteps, while robot-centric reinforcement
learning baselines extend to 500 steps per episode. Our
method reduces the required timesteps and accelerates simu-
lation by excluding the robot from the environment, thereby
eliminating computational costs associated with collisions,
physics, and robot control. The training process is conducted
across ten independent trials, with the mean and standard
deviation of the training times in Table [I| (columns 1& 2).

B. Evaluation and Metrics

We evaluate FLEX’s ability to generalize to unseen ob-
jects and complete the manipulation task autonomously.
The evaluation is conducted using 13 previously unseen
objects from the PartNet-Mobility [28] dataset, including
four microwaves, three dishwashers, three trashcans, and
three cabinets. For each object, the robot is provided with
a partial point cloud and must autonomously (1) infer the
joint type, (2) grasp the object using AO-GRASP [25] and
motion planner, (3) load the corresponding pre-trained policy,
and (4) execute the manipulation skill. Success is defined as
opening the object to at least 80% of its joint limit while
maintaining a stable gras To prevent “lucky success,” any
incorrect joint classification leads to immediate task failure.

To streamline the evaluation process, grasp proposals from
the AO-GRASP model are generated once at the beginning
of each trial and remain consistent throughout the 20 manip-
ulation attempts for each object. The evaluation protocol is
repeated for all 13 unseen objects, with 20 trials conducted
per object. The success rate is computed for each class of
objects, and we report the mean and standard deviation for
10 independent trials, as shown in Table [} (column 3).

We also assess the transferability of the learned policies
across different robots (Panda, URS5e, and Kinova Gen3)
within the Robosuite environment, recording success rates
for each manipulation task. To demonstrate the real-world
applicability of our method, we conduct a proof-of-concept
experiment using a URS robotic arm to open a drawerE]

C. Baselines

End-to-end RL: We implemented an end-to-end RL baseline
using the TD3 algorithm from Stable-Baselines3 [29] with a
hand-crafted, dense, staged reward function inspired by [3].
CIPS: We selected CIPS [14], a hybrid RL and planning
method that reduces task horizon by planning up to the point
of object contact. To speed up training, the planning phase

2A1 experiments, including baselines, were run on Intel® Core™ i9-
13900 (5 GHz) and RTX 4090 GPU, with 24 processes for multi-process.

3Relaxed to 70% for baselines to avoid zero success rates.

4Video demonstration is available in the supplementary materials.



Algorithm Training Training Success
(timesteps) (walltime) Rate
Mean+SD Mean+SD Mean+SD
Cabinet [Prismatic]
FLEX 0.4+0.26 M 0.36 +0.2 h 0.91+0.08
End-to-end RL >10M >24h <0.01
CIPS 3M 1.46 £0.02 h 0.3440.31
GAMMA-+Planning N/A N/A 0.4940.29
Trashcan [Prismatic]
FLEX 0.4+0.26 M 0.36 +0.2 h 0.88+0.10
End-to-end RL >10M >24h <0.01
CIPS 3M 1.46 +£0.02 h 0.1940.25
GAMMA-+Planning N/A N/A 0.2240.18
Microwave [Revolute]
FLEX 09+0.3M 0.63+0.22 h 0.67£0.14
End-to-end RL >10M >24h <0.01
CIPS 5M 2.844+0.2h 0.33+0.26
GAMMA-+Planning N/A N/A 0.4940.18
Dishwasher [Revolute]
FLEX 09+03M 0.63+£0.22 h 0.64+0.11
End-to-end RL >10M >24h < 0.01
CIPS 5M 2.84+02h 0.55+0.36
GAMMA+Planning N/A N/A 0.4740.38

TABLE I: Results on novel object instances evaluated using the
Panda robot. Our method (FLEX) is highlighted in grey. Training
time in hours, and timesteps in millions.

was skipped by pre-recording 4 instances per object, with the
robot already grasping the object at the start of each episode.
GAMMA: To benchmark against a SOTA visual perception-
based manipulation method, we selected GAMMA [21], a
pre-trained model that infers joint configurations and grasp
poses from partial point clouds. As GAMMA is a pre-trained
model that uses planning, training time was not applicable.

All RL-based baselines were trained on the same objects
and ground-truth observations as FLEX. During rollout, we
provide ground-truth joint configuration and type for these
baselines. We assume the ground-truth knowledge for joint
type is needed to complete the task, and we select the
correct result from multiple proposals given by GAMMA. To
maintain consistency, we use AO-GRASP for grasp proposals
in both CIPS and GAMMA.

VI. RESULTS & DISCUSSION

The results of our experiments are summarized in Tables [[]
and It can be seen that FLEX consistently outperforms
all baselines, including CIPS [2] and GAMMA [21], with
success rates ranging from 64% to 91% across various
objects. In some cases, FLEX achieves up to four times
higher success rates, demonstrating its superior performance
in task execution. Additionally, FLEX shows significantly
lower standard deviations in success rates, emphasizing the
stability and reliability of the learned policies.

FLEX significantly reduces training time, converging
faster with fewer timesteps and less wall time, as shown
in Table Il This efficiency is twofold: by decoupling the
robot from the training environment, FLEX avoids simulating
robot dynamics, collisions, and physics, accelerating training

Object Panda URS5e Kinova3
Cabinet 0.91+£0.08 0.82+0.13 0.77+0.12
Trashcan 0.88+£0.10 0.75+0.15  0.794+0.10
Microwave 0.67+£0.14 0.53+£0.08 0.55+0.12
Dishwasher 0.64+0.11 0.62+0.11  0.59+0.13

TABLE 1II: Success rates for different objects across different
robotic platforms.

and reducing computational costs. Additionally, learning in
force space reduces the action space and prevents inefficient
exploration (e.g., detaching from objects), allowing FLEX
to converge to a successful policy with fewer timesteps and
improved sample efficiency compared to the baselines.

In contrast, the end-to-end RL baseline struggles to per-
form the task, even after 10 million timesteps of training,
achieving negligible success rates despite using a staged
reward function [3]. This highlights the difficulty of the task,
particularly in balancing exploration and learning in high-
dimensional action spaces — in robot-centric environments.

CIPS [14] performs moderately well, but inefficient explo-
ration limits its stability. Once the robot enters undesirable
states (e.g., detaching from the object), it tends to repeat
these behaviors, resulting in poor performance in some trials.

GAMMA performs decently on most object types but
struggles with the trashcan task, where it fails to infer the
correct joint type. This leads to errors in joint configuration
inference and subsequent control, highlighting its difficulty
in generalizing to unseen objects outside its training set.

A key advantage of FLEX is its transferability across
robots. By decoupling manipulation skills from robot-
specific dynamics, FLEX can transfer to various robots
(Panda, URS5e, Kinova Gen3) without retraining. As shown
in Table [[IL FLEX performs consistently across robots with
minimal degradation, whereas CIPS and GAMMA require
significant tuning and adaptation, limiting their scalability.

VII. CONCLUSION & FUTURE WORK

We introduced FLEX, a framework for force-based learn-
ing of manipulation skills that decouples robot-specific dy-
namics from policy learning. FLEX enhances training ef-
ficiency, reduces action space complexity, and generalizes
well across various articulated objects and robotic platforms.
Our evaluations demonstrate FLEX’s high success rates
and consistent performance across multiple robot platforms,
including transfer to real-world settings, as evidenced by a
URS5 robot manipulating a drawer.

Future work will address the current lack of dynamic
force adjustments in response to varying object properties,
such as weight, friction, or joint damping. Another promising
direction will involve FLEX autonomously generating task-
specific environments in real-time, allowing it to adapt and
learn policies for novel goals. This would further enhance
its effectiveness in open-world scenarios. Finally, integrating
learning from demonstrations could improve data efficiency,
making the framework more adaptable and robust.
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